(environ
156
pages)
Suites et séries de fonctions - Exercices corrigés avec rappels de cours
Auteur(s) MONNA, G. MONNA (A01)
Editeur(s) CEPADUES
Rayon(s) SCIENCES FONDAMENTALES
Ean :
9782364930537
Date de parution :
18/02/2013
Résumé : Cet ouvrage traite de la théorie des suites et séries de fonctions d’une variable réelle ou complexe. Il insiste en particulier sur les séries entières et les séries de Fourier. Il s’adresse essentiellement aux étudiants de Licence (L2, L3), des Classes Préparatoires aux Grandes Écoles, ainsi qu’aux étudiants qui préparent le C.A.P.E.S. de Mathématiques. Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par thème et par ordre de difficulté croissante. Le lecteur pourra ainsi progresser à son rythme et de façon autonome dans cette discipline. Les exercices proposés sont typiques des questions posées aux examens et aux concours.
Table des matières
1 Suites et Séries de Fonctions
1.1 Rappels de cours
1.1.1 Suites de fonctions
1.1.2 Séries de fonctions
1.2 Exercices
1.2.1 Suites de fonctions
1.2.2 Séries de fonctions
2 Séries Entières
2.1 Rappels de cours
2.1.1 Définition d’une série entière et de son rayon de convergence
2.1.2 Propriétés fondamentales
2.1.3 Détermination pratique du rayon de convergence
2.1.4 Sommes et produits de séries entières
2.1.5 Intégration
2.1.6 Le théorème de convergence d’Abel-Dirichlet
2.1.7 Développement en série entière d’une fonction
2.1.8 Développements en série entière de quelques fonctions usuelles
2.2 Exercices
3 Séries de Fourier
3.1 Rappels de cours
3.1.1 Séries trigonométriques
3.1.2 Séries de Fourier
3.1.3 Conditions de Dirichlet
3.1.4 Etude de l’espace vectoriel D
3.2 Exercices
Table des matières
1 Suites et Séries de Fonctions
1.1 Rappels de cours
1.1.1 Suites de fonctions
1.1.2 Séries de fonctions
1.2 Exercices
1.2.1 Suites de fonctions
1.2.2 Séries de fonctions
2 Séries Entières
2.1 Rappels de cours
2.1.1 Définition d’une série entière et de son rayon de convergence
2.1.2 Propriétés fondamentales
2.1.3 Détermination pratique du rayon de convergence
2.1.4 Sommes et produits de séries entières
2.1.5 Intégration
2.1.6 Le théorème de convergence d’Abel-Dirichlet
2.1.7 Développement en série entière d’une fonction
2.1.8 Développements en série entière de quelques fonctions usuelles
2.2 Exercices
3 Séries de Fourier
3.1 Rappels de cours
3.1.1 Séries trigonométriques
3.1.2 Séries de Fourier
3.1.3 Conditions de Dirichlet
3.1.4 Etude de l’espace vectoriel D
3.2 Exercices
Disponible, expédié sous 2 à 6 jours
17.00 €